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Induction of Senescence-Associated Growth Inhibitors
in the Tumor-Suppressive Function of Retinoids
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Abstract Retinoids, physiological regulators of cell growth and differentiation, are used in the treatment or chemo-
prevention of several malignant diseases. This class of compounds can induce growth arrest or apoptosis in tumor cells.
Permanent growth arrest of retinoid-treated cells is often assumed to result from retinoid-induced differentiation. Recent
studies in breast carcinoma and neuroblastoma cells demonstrated that retinoids can stop tumor cell growth through the
programof senescence rather than differentiation. Retinoid-induced tumor suppression is associatedwith the induction of
multiple intracellular and secreted growth-inhibitory proteins.Most of these proteins were also found to be upregulated in
senescent cells. The induction of senescence-associated growth inhibitors appears to be an indirect effect of retinoids.
Elucidation of the mechanisms responsible for the induction of growth-inhibitory genes in retinoid-treated cells should
help in developing agents that wouldmimic the antiproliferative effect of retinoids in retinoid-insensitive cancers. J. Cell.
Biochem. 88: 83–94, 2003. � 2002 Wiley-Liss, Inc.
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Retinoids, derivatives of vitamin A, are phy-
siological signaling molecules that are involved
in the regulation of organism development,
tissuedifferentiation, and cell death.The effects
of retinoids are mediated at the level of trans-
cription, through binding to transcription fac-
tors formed by dimerization of retinoic acid
receptors (RAR) and rexinoid receptors (RXR).
These factors regulate transcription initiation
by binding to retinoic acid response elements
(RARE) in the promoters of retinoid-responsive
genes. Retinoid receptors also affect the activity
of other transcription factors through as yet
unknown mechanisms. In particular, retinoid
receptors are known to repress growth-stimu-
lating transcription factor AP-1 (Jun/Fos), and
AP-1 inhibition was suggested to contribute to

the antiproliferative effect of retinoids [Leder
et al., 1990; Chambon, 1996; Altucci and
Gronemeyer, 2001].

Retinoids have been used with great success
in the treatment of acute promyelocytic leuke-
mia (APL), a disease caused by genetic rearran-
gements of a retinoid receptor RARa. Retinoids
are also routinely used in several premalignant
diseases, including leukoplakia, actinic kerato-
sis, and cervical dysplasia, and in chemopreven-
tion of skin cancer in patients with xeroderma
pigmentosum [Altucci and Gronemeyer, 2001].
Specific retinoids have also shown encourag-
ing results in chemoprevention trials of seve-
ral other cancers, in particular breast cancer.
None of the most common cancers, however,
have shown so far any significant response to
the therapeutic action of retinoids. The princi-
pal mechanism of retinoid resistance in human
cancers is direct or indirect inactivation of RAR.
In particular, the gene for retinoid receptor
RARb was shown to be a tumor suppressor,
which is frequently silenced in many types of
solid tumors; the loss of RARb is responsible at
least in part for the loss of retinoid sensitivity in
the corresponding tumors [Li et al., 1995;
Seewaldt et al., 1995; Liu et al., 1996a; Altucci
and Gronemeyer, 2001].

Is it possible to exploit the physiological
antiproliferative effects of retinoids in cancer
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treatment, given the ease with which tumor
cells inactivate retinoid receptors. One ap-
proach involves the use of synthetic ‘‘atypical’’
retinoids, which appear to have both receptor-
dependent and independent functions, and
which also affectretinoid-resistant cells [Altucci
and Gronemeyer, 2001]. It is unclear, however,
if the receptor-independent activity of atypical
retinoids has any relationship to the effects that
are normally mediated through retinoid re-
ceptors. Another potential approach is to re-
store RARb expression to tumor cells, via gene
therapy or through non-specific transcription-
reactivating strategies, such as inhibition of
histone deacetylases or demethylation of DNA
[Bovenzi andMomparler, 2001;Widschwendter
et al., 2001]. The most general approach could
be to bypass the retinoid receptors altogether
by developing non-retinoid drugs that would
mimic the effect of retinoids on signal transduc-
tion pathways responsible for the tumor-sup-
pressive effect. The latter strategy requires an
understanding of cellular events that occur
downstream of the retinoid receptor action and
that are responsible for the antiproliferative
effect of retinoids.

In recent years, much attention has been
devoted to the ability of retinoids to induce
apoptosis, and candidate pathways mediating
this effect have been identified [Altucci and
Gronemeyer, 2001; Kucharova and Farkas,
2002]. The apoptotic activity is associated pri-
marily with the above-mentioned ‘‘atypical’’
retinoids, as well as with high doses of natu-
ral retinoids. The originally described growth-
inhibitingactivityofnatural retinoids,however,
is a cytostatic effect associated with changes in
cell morphology. This effect is usually attri-
buted to retinoid-induced differentiation of
tumor cells. In many cases, such as APL
[Di Noto et al., 1994; Gianni et al., 1994],
embryonal carcinoma [Andrews, 1984], or neu-
roblastoma [Linnala et al., 1997; Kohring and
Zimmermann, 1998], this conclusion has been
corroborated by the induction of differentiation-
specific protein markers or specialized mor-
phological structures. In other cases, however,
no convincing evidence has been presented to
define the retinoid response as differentiation.
As described below, considerable evidence has
now emerged to demonstrate that retinoids
can stop the growth of tumor cells through
another physiological program, cell senescence.
Analysis of changes in gene expression asso-

ciated with retinoid-induced growth arrest has
revealed concerted induction of a group of
senescence-associated genes with known
growth-inhibitory or tumor-suppressive activ-
ity. The identification of genes that mediate
retinoid-induced senescence should help in de-
veloping non-retinoid agents that would mimic
the growth-inhibitory effect of retinoids.

TUMOR CELL SENESCENCE AS A
DETERMINANT OF TREATMENT RESPONSE

Cell senescence is a physiological process
that leads to irreversible growth arrest, accom-
panied by characteristic phenotypic changes
(such as enlarged and flattened cell shape, in-
creasedgranularity,andinductionofsenescence-
associated b-galactosidase activity, SA-b-gal).
Senescence was originally described in normal
human cells explanted in culture; such cells
undergo only a limited number of cell divisions
prior to permanent growth arrest [Hayflick
and Moorhead, 1961]. This gradual process of
‘‘replicative senescence’’ is now known to result
from shortening of telomeres at the ends of the
chromosomes [Campisi, 2000]. More recently,
senescence was also shown to occur as a rapid
process that does not involve telomere shorten-
ing. This ‘‘accelerated senescence’’ is triggered
by such factors as DNA damage or expression
of mutant Ras [Di Leonardo et al., 1994;
Serrano et al., 1997; Robles and Adami, 1998].
Growth arrest in both replicative and accele-
rated senescence of normal cells is mediated
by the activation of p53, which then induces
a cyclin-dependent kinase (CDK) inhibitor
p21Waf1/Cip1/Sdi1 thus producing cell cycle arrest.
The levels of p21 decrease after the esta-
blishment of growth arrest, but another CDK
inhibitor, p16Ink4A becomes constitutively upre-
gulated. Continuous p16 expression is believed
to be responsible for the maintenance of growth
arrest in normal senescent cells [Alcorta et al.,
1996; Stein et al., 1999].

Cell senescence, like apoptosis, is believed
to be a natural anti-carcinogenic program
[Campisi, 2000]. Indeed, the process of carcino-
genesis involves events that inhibit senes-
cence. These include activation of telomerase,
an enzyme that extends telomeres and thereby
prevents replicative senescence, and inactiva-
tion of tumor suppressors p53 and p16, which
mediate both replicative and accelerated sen-
escence. Nevertheless, tumor cells, which as a
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rule have short telomeres and carry senescence-
promotingmutations (suchasmutantRAS), can
be induced to undergo accelerated senescence.
This can be achieved by ectopic overexpres-
sion of tumor suppressor genes (such as p53,
RB, p16, or p21), or by inhibition of telomerase
[Shammas et al., 1999] or other senescence-
suppressing oncogenes. For example, inhibition
of papillomavirus oncoproteins E6 and E7 in
cervical carcinoma induced rapid senescence
in almost 100% of the cells [Goodwin et al.,
2000]. Our laboratory has found that treat-
ment of tumor cells with various chemothera-
peutic drugs or ionizing radiation induces the
senescent phenotype in many of the treated
cells. Such cells remain intact but they do not
divide or form colonies [Chang et al., 1999a].
Chemotherapy-induced senescencewas also de-
monstrated in xenograft models [Roninson
et al., 2001] and in clinical samples of breast
cancer [te Poele et al., 2002]. Tumor senescence,
along with apoptosis, was shown in a recent
study to determine in vivo response to chemo-
therapy in a transgenic mouse model of B-cell
lymphoma [Schmitt et al., 2002].
In thestudyofSchmittetal. [2002], treatment-

induced senescence of mouse lymphoma cells
was undetectable in the absence of either p53
or p16. In human tumor cell lines, however,
drug-induced senescence readily develops in
the absence of p16, and it is diminished
but not abolished by the loss of p53 or p21
[Chang et al., 1999b]. This suggested that some
genes other than p53, p21, or p16 are likely to
play a role in accelerated senescence of tumor
cells. Indeed, cDNAmicroarrayanalysis showed
that doxorubicin-induced senescence of human
colon carcinoma cells is associated with sus-
tained induction of multiple growth-inhibitory
genes, including several tumor suppressors.
These include intracellular growth inhibitors,
such as BTG1, BTG2, and EPLIN, as well as
secreted proteins with growth-suppressing
activity, such as Maspin, MIC-1, or IGFBP-6
[Chang et al., 2002].
On the other hand, some of the genes upregu-

lated in doxorubicin-induced senescence encode
secreted factors with anti-apoptotic, mitogenic,
and angiogenic functions [Chang et al., 2002].
Expression of these genes is likely to account
for paracrine tumor-promoting activities that
were associated with different forms of senes-
cence in human fibroblasts [Krtolica et al.,
2001]. The induction of tumor-promoting fac-

tors is mediated in part through p21, and p21
expression alone is sufficient to induce such
genes and their associated paracrine activities
[Chang et al., 2000]. p21 induction is a common
response to DNA-damaging agents and some
other chemotherapeutic drugs, and the side ef-
fects of p21 induction need to be taken into
account when considering the effects of tumor
senescence on the outcome of conventional
chemotherapy.

RETINOID-INDUCED SENESCENCE
IN HUMAN TUMOR CELL LINES

Given the ease with which drug-treated
tumor cells undergo senescence, it was natural
to consider if retinoids could have the same
effect. This possibility was first investigated in
MCF-7 breast carcinoma cells treated with all-
trans-retinoic acid (RA) [Chang et al., 1999a].
To minimize the cytotoxic effect of retinoids,
MCF-7 cells were treated with a low (100 nM)
dose of RA. RA-treated cells started growing
slower than untreated cells between days 4 and
6, and showed a small (20%) decrease in cell
number between days 6 and 9 (Fig. 1A). In this
latter period, no cell division could be detected
by a flow cytometric assay, indicating that the
effect of RA was primarily cytostatic [Chang
et al., 1999a]. This growth arrest was largely
irreversible, since 7-day exposure to 100 nMRA
decreased colony formation in drug-free media
by 90% [Dokmanovic et al., 2002]. RA-induced
growth arrest was accompanied by senescence-
like changes in cell morphology (enlarged and
flattened cells, increased granularity) and by a
drastic increaseinSA-b-galexpression(Fig.1B),
which reached 84% after 8 days of treatment
(Fig. 1A). The combination of morphological
changes, SA-b-gal induction, and irreversible
growth arrest indicated that RA-treatedMCF-7
cells were undergoing senescence. The same
study [Chang et al., 1999a] showed that induc-
tion of the senescent phenotype by retinoids is
not limited to cell culture. Thus, SA-b-gal ex-
pression was also induced by in vivo treatment
of mice carrying a xenograft of MCF10AneoT
transformed mammary epithelial cells with an
atypical retinoid fenretinide [4-(Hydroxyphenyl)
retinamide, 4-HPR].

In a more recent study, Wainwright et al.
[2001] compared RA-induced senescence and
differentiation in human neuroblastoma cells.
Remarkably, two otherwise indistinguishable
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Fig. 1. Retinoic acid-induced senescence in MCF-7 breast
carcinoma cells. A: Time course of changes in cell number
(circles) and percentages of SA-b-galþ cells (triangles) forMCF-7
cells, untreated (thin blue lines) or treatedwith 100 nMRA (thick
red lines) (from Chang et al., 1999a). B: SA-b-gal staining of
untreatedMCF-7 cells and cells exposed to 100 nMRA for 8 days

(from Chang et al., 1999a). C: Immunostaining for EPLIN in
untreated MCF-7 cells and in cells treated with 100 nM RA for
5 days (from Dokmanovic et al., 2002). D: Immunostaining
for IGFBP-3 in untreated MCF-7 cells and in cells treated with
100 nM RA for 5 days (from Dokmanovic et al., 2002).
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subclones of the neuroblastoma cell line SK-
N-SHshoweddifferentmorphological responses
to RA. In a subclone designated SH-N, RA treat-
ment induced neuronal differentiation, charac-
terized by extensive neurite outgrowths, and
induction of differentiation markers (neuro-
filaments 68 and 160). In another subclone,
SH-F, RA treatment induced characteristic
features of senescence, as it transformed the
small neuroblastic cells into large, flattened,
epithelium-like cells, which were characterized
by the accumulation of SA-b galmarker by day 7
of treatment. Although both cell lines were
growth arrested byRA, only the senescing SH-F
cells downregulated Cyclin D1 expression, and
their growth arrest developed more rapidly
than in the differentiating SH-N cells.
Wainwright et al. [2001] also compared the

expression of several CDK inhibitors in SH-N
and SH-F cell lines and found two major
differences. One of them was that p16Ink4A and
a related CDK inhibitor p18Ink4B were expres-
sed only in SH-F but not in SH-N cells, and
expression of these proteins in SH-F wasmildly
increased by RA (p16 upregulation, however,
was only transient). The second difference was
that RA treatment increased the levels of p21 in
the differentiating SH-N cells, but it decreased
p21 expression in SH-F cells undergoing senes-
cence. Transfection of SH-N with either p21 or
p16 inhibited cell growth, but only p21 induced
differentiation in this subclone [Wainwright
et al., 2001]. These results suggested that p21,
which plays multiple roles in different cellular
processes [Dotto, 2000], may be a key switch
between retinoid-induced senescence and dif-
ferentiation. Interestingly, RA treatment of
MCF-7 cells also decreases p21 expression
[Zhu et al., 1997]. p21 downregulation in both
of the characterized systems of retinoid-induced
senescence stands in sharp contrast to the sen-
escence induced by conventional chemothera-
peutic drugs, where p21 expression is usually
increased.

RETINOID-INDUCED SENESCENCE IS
ASSOCIATED WITH THE INDUCTION OF
MULTIPLE GROWTH-INHIBITORY GENES

Genes that are directly induced by retinoids
typically increase their expression within 12 h
of retinoid treatment, but the onset of growth
arrest and senescence in RA-treated MCF-7
cells requires at least 4 days (Fig. 1A). This

growth response seems likely therefore to be
mediated by indirect transcriptional effects of
retinoids. To identify genes that maintain
senescence in retinoid-treated tumor cells, we
have used cDNA microarray hybridization to
compare gene expression between untreated
MCF-7 cells and cells treated with retinoids for
5 days, the period of time required for pro-
nouncedgrowth inhibitionandexpressionof the
senescent phenotype [Dokmanovic et al., 2002].
cDNAmicroarrayhybridizationwas followedby
reverse transcription-PCR assays for 47 genes
that showed the biggest changes in the micro-
array. This analysis revealed that 13 genes
showed amajor (5–10 fold or higher) increase in
their RNA levels after 5 days of RA treatment,
whereas changes in the expression of other
genes (either upregulated or downregulated)
were only minor. All 13 of the strongly affected
genes were induced both by RA and by atypical
retinoid fenretinide.

A very high fraction (4/13) of the strongly
induced genes encode growth-inhibitory pro-
teins, some of which have been implicated in
other models of cell senescence. The nature of
these genes (described in the next section) sug-
gests that they are directly involved in retinoid-
induced growth arrest. Some of the other genes
induced in MCF-7 cells are involved in RA syn-
thesis, the proteasome-mediated protein degra-
dation, and cell adhesion. Interestingly, while
some of the induced genes encode markers of
hematopoietic differentiation (a well-known ef-
fect of retinoids), none of them have been asso-
ciated with epithelial differentiation, providing
additionalevidence thatretinoid-inducedarrest
of MCF-7 carcinoma cells represents senes-
cence rather than differentiation [Dokmanovic
et al., 2002].

A number of other studies have demonstrated
that retinoid treatment of tumor cells upregu-
lates the expression of tumor-suppressing pro-
teins. Table I lists 18 growth-inhibitory genes
that have been shown in the literature to be
induced in solid tumor or leukemia cells by
retinoid treatment, including four genes identi-
fied in our study. Interestingly, five genes in
Table I encode secreted growth-inhibitory pro-
teins, which inhibit the growth not only of the
expressing cells but also their neighbors.
Remarkably, 14 of 18 genes in Table I, including
all five secreted inhibitors, have beenassociated
with cell senescence, as described in the next
section. It remains to be determined if the
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remaining four inhibitors (putative tumor sup-
pressors TIG-3/RIG-1 and DRG-1, metastasis
suppressor nm23-H1, and SOCS family protein
ASB-2) are also overexpressed in any forms of
senescence.

We have screened the promoter sequences
of all the growth-inhibitory human genes in
Table I (except forDRG-1, thepromoter ofwhich
is currently absent from the human genome
database) for the presence of retinoid response
elements (RARE).We have found awell-defined
RARE sequence in only one gene, RARb (trans-
cription of which is known to be induced by
retinoids via another receptor, RARa). In addi-

tion, the promoter of IGFBP-7 gene contains
two potential RARE half sites (AGGTCA) about
1,450 bp upstream of the transcription start
site, but this remote position and an unusual
inverse orientation of the two half sites make
it unlikely that these are functional RARE
sequences. Similarly, we have previously re-
ported that the promoter of only one of 13 genes
thatwere strongly induced by retinoids inMCF-
7 cells contained RARE, and this gene was
induced more rapidly than the other 12 genes
(including all four growth inhibitors identified
in this study) [Dokmanovic et al., 2002]. These
observations suggest that induction of the

TABLE I. Retinoid-Inducible Growth-Inhibitory Genes

Gene Inducing retinoids Tumor type References

Senescence-associated growth inhibitors (intracellular)
RARb RA, 9-cis RA, 13-cis RA, 4-HPR Squamous cell carcinoma, breast

carcinoma, neuroblastoma,
hepatoma, lung carcinoma,
cervical carcinoma, teratocarcinoma,
melanoma, colon carcinoma,
pancreatic carcinoma, esophageal
carcinoma, glioma

deTheet al. [1989];Nervi et al. [1991];
Bartsch et al. [1992]; Clagett-Dame
et al. [1993]; Kurie et al. [1993];
Swisshelm et al. [1994]; Lotan
[1994]; Xu et al. [1994]; Redfern
et al. [1990]; Spanjaard et al.
[1995];Kazmi et al. [1996];Agarwal
et al. [1996]; Zugmaier et al. [1996];
Xu et al. [1999]; Carpentier et al.
[1999]; Lee et al. [2000]

EPLIN b RA, 4-HPR Breast carcinoma Dokmanovic et al. [2002]
FAT-10 RA, 4-HPR Breast carcinoma Dokmanovic et al. [2002]
BTG-1 RA APL Liu et al. [2000a]
p73 RA Neuroblastoma De Laurenzi et al. [2000]
p27Kip1 RA, 9-cis RA Neuroblastoma, astrocytoma, lung

carcinoma, ovarian carcinoma,
oral squamous cell carcinoma,
myeloblastic leukemia

Weber et al. [1999];Dirks et al. [1997];
MatsuoandThiele [1998];Hsuetal.
[2000]; Dimberg et al. [2002];
Pomponi et al. [1996]; Hayashi
et al. [2000]

p18Ink4C RA Myeloblastic leukemia, neuroblastoma Shimizu and Takeda [2000];
Wainwright et al. [2001]

p16Ink4A RA Neuroblastoma, ovarian carcinoma Wainwright et al. [2001]; Zhang
et al. [2001]

p21Waf1/Cip1/Sdi1 RA, CD 437, 9-cis RA Myeloma, APL, melanoma, oral
squamous cell carcinoma, gastric
carcinoma, APL, lung carcinoma,
hepatoma

Chen et al. [1999]; Naka et al. [1997];
Liu et al. [1996b]; Adachi et al.
[1998]; Li et al. [1998]; Casini and
Pelicci [1999]; Sun et al. [1999];
Hsu et al. [1999]; Hayashi et al.
[2000]; Demary et al. [2001]

Senescence-associated growth inhibitors (secreted)
IGFBP-3 RA, 4-HPR, TTNPB Breast carcinoma, squamous

cell carcinoma, prostatic
adenocarcinoma, hepatocellular
carcinoma, cervical carcinoma

Goossens et al. [1999]; Murakami
et al. [2000]; Gucev et al. [1996];
Hwa et al. [1997]; Adamo et al.
[1992]; Andreatta-Van Leyen et al.
[1994]; Le et al. [2002]

IGFBP-6 RA, 9-cis RA, 13-cis RA Colon carcinoma, embryonal
carcinoma, osteosarcoma,
neuroblastoma, breast carcinoma,
SV-40 transformed fibroblasts

Freemantle et al. [2002]; Kim et al.
[2002]; Sheikh et al. [1993]; Yan
et al. [2001]; Martin et al. [1994];
Zhou et al. [1996]; Chambery et al.
[1998]; Babajko and Binoux [1996]

IGFBP-7/mac25 RA Mammary carcinoma Swisshelm et al. [1995]
big-h3 RA, 4-HPR Breast carcinoma Dokmanovic et al. [2002]
TGFb-1 RA U937 leukemia Defacque et al. [1999]

Other growth inhibitors (intracellular)
TIG-3/RIG-1 RA Breast carcinoma, gastric carcinoma Huang et al. [2000]; DiSepio et al.

[1998]
Drg-1 LG268 Colon carcinoma Guan et al. [2000]
Nm23-H1 RA Hepatocellular carcinoma Liu et al. [2000b]
ASB-2 RA APL Guibal et al. [2002]
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majority of growth-inhibitory genes is an indir-
ect effect of retinoids.

NATURE OF SENESCENCE-ASSOCIATED
RETINOID-INDUCIBLE GROWTH INHIBITORS

The first gene in Table I is retinoid receptor
RARb, a tumor suppressor and a key deter-
minant of tumor cell response to retinoids.
In particular, RARb2 isoform is upregulated in
senescent dermal fibroblasts [Lee et al., 1995]
and mammary epithelial cells [Swisshelm
et al., 1994], suggesting a role for RARb in re-
plicative senescence. Expression of RARb not
only sensitizes cells to retinoids but also has its
own growth-inhibitory effect [Si et al., 1996].
One of the intracellular proteins induced by

retinoids in MCF-7 cells is Epithelial Protein
Lost in Neoplasm (EPLIN), an actin-binding
LIM domain protein, which is expressed in
primary epithelial cells but downregulated in
different types of carcinomas [Maul and Chang,
1999]. Re-expression of EPLIN is associated
with the induction of senescence not only in
retinoid-treated MCF-7 cells (as illustrated by
immunohistochemical staining in Fig. 1C) but
also in doxorubicin-treated HCT116 colon car-
cinoma cell line [Chang et al., 2002]. Another
senescence-associated growth inhibitor identi-
fied in the latter study is the tumor suppressor
BTG1,whichwas found byLiu et al. [2000a] and
Zhang et al. [2001] to be induced by RA in APL
cells. Still another retinoid-inducible tumor
suppressor is p73, a p53-related gene, over-
expression of which induces senescence in blad-
der carcinoma cells [Fang et al., 1999]. One of
the genes upregulated in retinoid-induced sen-
escence ofMCF-7 cells encodes anubiquitin-like
protein FAT10. FAT10 interacts with one of the
components of mitotic spindle checkpoint [Liu
et al., 1999], and we have shown that FAT10
inhibits MCF-7 cell growth [Dokmanovic et al.,
2002].
The remaining senescence-associated intra-

cellular growth inhibitors in Table I are CDK
inhibitors p21, p16, p18, and p27. p16 and p21
play a key role in replicative and accelerated
senescence of normal cells, and p27 appears to
mediate some of the pathways of accelerated
senescence [Bringold and Serrano, 2000]. As
mentioned above, p16 and p18 are upregulated
in retinoid-induced senescence of SH-F neu-
roblastoma cells [Wainwright et al., 2001]. In
contrast, p21, as mentioned above, is down-

regulated inSH-FandMCF-7 cells thatundergo
RA-induced senescence, and p21 induction in
SH-N neuroblastoma is associated with differ-
entiation rather than senescence.

Three of the five secreted growth inhibitors in
Table I belong to the insulin-like growth factor
(IGF)-binding protein (IGFBP) family of pro-
teins, which modulate the binding of IGFs to
their receptors. The best known of these is
IGFBP-3, which was shown to be induced by
different retinoids in many types of tumor cells.
Figure 1D illustrates the induction of IGFBP-3
in RA-treated MCF-7 cells. Overexpression of
the IGFBP-3 gene or addition of the IGFBP-3
protein to culture media inhibit the growth of
tumor cells. This inhibition is associated with
both cell cycle arrest and apoptosis, which is at
least in part IGF-independent [Hong et al.,
2002]. IGFBP-3 is strongly overexpressed in
senescent human fibroblasts [Goldstein et al.,
1991] and prostate epithelial cells [Schwarze
et al., 2002]. Another retinoid-inducible protein
of the same family, IGFBP-6, is upregulated
in doxorubicin-induced senescence of colon car-
cinoma cells [Chang et al., 2002]. Of special
interest is another retinoid-inducible member
of this family, IGFBP-7, also known as mac25
or IGFBP-rP1. Expression of this protein in
MCF-7 cells was recently shown to induce not
only growth arrest but also the senescent phe-
notype [Wilson et al., 2002]. Another retinoid-
inducible secreted protein, TGFb-1, is induced
in many types of senescent cells, and its induc-
tion was shown to mediate the development
of the senescent phenotype in human fibro-
blasts treated with hydrogen peroxide [Frippiat
et al., 2001]. The last protein in this group is
an extracellular matrix protein big-h3, which is
upregulated in RA-induced senescence of MCF-
7 cells. big-h3 is a TGFb-inducible genewhich is
expressed in normal but not in transformed
human fibroblasts [Schenker and Trueb, 1998],
and its expression inhibits the tumorigeni-
city of Chinese hamster ovary cells [Skonier
et al., 1994].

SUMMARY AND FUTURE DIRECTIONS

It has now become apparent that activation
of the program of cell senescence is one of
the mechanisms of tumor suppression by reti-
noids. Future studies will undoubtedly provide
many other examples of retinoid-induced senes-
cence and will allow us to compare the relative
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contributions of senescence and differentia-
tion to the antiproliferative effect of retinoids.
Retinoid-induced senescence of tumor cells
shares many similarities with senescence in-
duced by DNA-damaging chemotherapeutic
drugs or radiation, both at the phenotypic level
and at the level of specific growth-inhibitory
genes that are upregulated in both types of
senescence. On the other hand, there are impor-
tant differences between the characterized sys-
tems of retinoid-induced and damage-induced
senescence of tumor cells. Both replicative sen-
escence and damage-induced accelerated senes-
cence are associated with the induction of CDK
inhibitor p21,which in its turnupregulates a set
of genes that encode secreted factors with
mitogenic, anti-apoptotic and angiogenic activi-
ties. p21 induction is likely to be responsible at
least in part for the paracrine tumor-promoting
functions associatedwith senescent cells. Drug-
or radiation-induced senescence, however, can
also occur in the absence of p21, albeit at a
diminished rate [Chang et al., 1999b]. In con-
trast to damage-induced senescence, p21 is
downregulated by RA treatment in both NH-F
neuroblastoma and MCF-7 breast carcinoma
cell lines. Remarkably, none of the genes that
we have found to be induced in RA-treated
MCF-7 cells encode proteinswith known tumor-
promoting functions, whereas some of the pro-
teins induced in these cells have paracrine
tumor-suppressing effects. This suggests that
retinoid-inducedsenescencerepresentsanespe-
cially desirable form of tumor suppression.

The identification of growth-inhibitory genes
that are upregulated in retinoid-induced senes-
cence opens potential venues towards develop-
ingnon-retinoid drugs thatwill induce the same
type of senescence in tumor cells. Two lines of
evidence suggest that it should be possible to
find such agents. The first argument is that the
retinoid-inducible growth inhibitors, with the
exception of RARb, have no apparent RARE
sites in their promoters. These genes appear to
be induced by retinoids through an indirect
mechanism, which is likely to be susceptible to
other types of inducers.Onewell known indirect
effect of retinoids is downregulation of prolif-
eration-associated transcription factor complex
AP-1 [Altucci and Gronemeyer, 2001], but at
present we have no evidence to relate the induc-
tion of retinoid-inducible growth inhibitors to
the AP-1 function. The second argument is that
most of retinoid-inducible growth inhibitors are

upregulated in senescent cells that have never
been exposed to retinoids, and some of these
inhibitors (e.g., EPLIN, BTG1, IGFBP-6) are
inducible by conventional chemotherapeutic
drugs. Elucidation of the regulatory pathways
responsible for the induction of senescence-
associated growth inhibitors in retinoid-treated
cells and development of high-throughput
screening systems for the induction of such
inhibitors will enable us to explore this novel
strategy for stopping the growth of tumor cells.
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